Eureka Math"' Homework Helper

2015-2016

Grade 6 Module 2 Lessons 1-8

Eureka Math, A Story of Ratios®

Published by the non-profit Great Minds.
Copyright © 2015 Great Minds. No part of this work may be reproduced, distributed, modified, sold, or commercialized, in whole or in part, without consent of the copyright holder. Please see our User Agreement for more information. "Great Minds" and "Eureka Math" are registered trademarks of Great Minds.

G6-M2-Lesson 1: Interpreting Division of a Fraction by a Whole Number (Visual Models)

Find the value of each in its simplest form.

1. $\frac{1}{2} \div 4$

2. Three loads of sand weigh $\frac{3}{4}$ tons. Find the weight of 1 load of sand.

3. Sammy cooked $\frac{1}{6}$ the amount of chicken he bought. He plans on cooking the rest equally over the next four days.
a. What fraction of the chicken will Sammy cook each day?

$$
\frac{6}{6}-\frac{1}{6}=\frac{5}{6}
$$

$$
\frac{5}{6} \div 4=\frac{5}{6} \times \frac{1}{4}=\frac{5}{24}
$$

b. If Sammy has 48 pieces of chicken, how many pieces will he cook on Wednesday and Thursday? $\frac{5}{24}(48)=10$; he will cook 10 pieces each day, so $10+10=20$. He will cook 20 pieces of chicken on Wednesday and Thursday.
4. Sandra cooked $\frac{1}{3}$ of her sausages and put $\frac{1}{4}$ of the remaining sausages in the refrigerator to cook later. The rest of the sausages she divided equally into 2 portions and placed in the freezer.
a. What fraction of sausage was in each container that went in the freezer?

$$
\frac{3}{3}-\frac{1}{3}=\frac{2}{3}
$$

To find a fourth of the remaining, I need to divide the remaining $\frac{2}{3}$ into 4 equal pieces.

$$
\frac{2}{3} \div 4=\frac{2}{3} \times \frac{1}{4}=\frac{2}{12}=\frac{1}{6}
$$

The darkest shaded value is $\frac{1}{4}$ the amount of the tape diagram.

$$
\frac{6}{12} \div 2=\frac{6}{12} \times \frac{1}{2}=\frac{6}{24}=\frac{3}{12}=\frac{1}{4}
$$

To find half of the remaining $\frac{6}{12}$, I need to divide by two.
b. If Sandra placed 20 sausages in the freezer, how many sausages did she start with?
$20 \div \frac{6}{12}$ or $20 \div \frac{1}{2}$ 20 is $\frac{1}{2}$ of what size?

1 unit $=20$
2 units $=2 \times 20=40$
Sandra started with 40 sausages.

G6-M2-Lesson 2: Interpreting Division of a Whole Number by a Fraction (Visual Models)

1. Ken used $\frac{5}{6}$ of his wrapping paper to wrap gifts. If he used 15 feet of wrapping paper, how much did he start with?

$$
\begin{aligned}
& 15 \div \frac{5}{6} \\
& 5 \text { units }=15 \\
& 1 \text { unit }=15 \div 5=3 \\
& 6 \text { units }=6 \times 3=18
\end{aligned}
$$

Ken started with 18 feet of wrapping paper.
2. Robbie has 4 meters of ribbon. He cuts the ribbon into pieces $\frac{1}{3}$ meters long. How many pieces will he make?

Robbie will make 12 pieces of ribbon.
3. Savannah spent $\frac{4}{5}$ of her money on clothes before spending $\frac{1}{3}$ of the remaining money on accessories. If the accessories cost $\$ 15$, how much money did she have to begin with?

1 unit $=15$
15 units $=15 \times 15=225$
Savannah had \$225 at first.
4. Isa's class was surveyed about their favorite foods. $\frac{1}{3}$ of the students preferred pizza, $\frac{1}{6}$ of the students preferred hamburgers, and $\frac{1}{2}$ of the remaining students preferred tacos. If 9 students preferred tacos, how many students were surveyed?

One third of the total amount of students preferred pizza. I can represent this with a tape diagram.

3 units = 9
1 unit $=9 \div 3=3$
12 units $=12 \times 3=36$
There were 36 students surveyed.
5. Caroline received her pay for the week. She spent $\frac{1}{4}$ of her pay on bills and deposited the remainder of the money equally into 2 bank accounts.
a. What fraction of her pay did each bank account receive?

$$
\begin{array}{r}
1-\frac{1}{4}=\frac{3}{4} \\
\frac{3}{4} \div 2=\frac{3}{4} \times \frac{1}{2}=\frac{3}{8}
\end{array}
$$

b. If Caroline deposited $\$ 60$ into each bank account, how much did she receive in her pay?

3 units $=\mathbf{6 0}$
1 unit $=60 \div 3=20$
8 units $=8 \times 20=160$
Caroline received $\$ 160$ in her pay.

G6-M2-Lesson 3: Interpreting and Computing Division of a Fraction by a Fraction-More Models

Rewrite the expression in unit form. Find the quotient. Draw a model to support your answer.

1. $\frac{6}{8} \div \frac{2}{8}$

6 eighths $\div 2$ eighths $=3$

1 group of $\frac{2}{8}$
1 group of $\frac{2}{8}$
1 group of $\frac{2}{8}$
I can look at this as, "How many groups of $\frac{2}{8}$ can fit in $\frac{6}{8}$?"

Rewrite the expression in unit form. Find the quotient.
2. $\frac{7}{6} \div \frac{4}{6}$

7 sixths $\div 4$ sixths $=7 \div 4=\frac{7}{4}=1 \frac{3}{4}$

The units are the same in the dividend and divisor. I can easily divide the numerators.

Represent the division expression in unit form. Find the quotient.
3. A biker is $\frac{6}{7}$ miles from the finish line. If he can travel $\frac{5}{7}$ miles in one minute, how long until he reaches the finish line?
$\frac{6}{7} \div \frac{5}{7}=6$ sevenths $\div 5$ sevenths $=6 \div 5=\frac{6}{5}=1 \frac{1}{5}$
It will take him $1 \frac{1}{5}$ minutes, or 1 minute and 12 seconds, to reach the finish line.
4. A seamstress has 5.2 feet of ribbon.
a. How many $\frac{6}{10}$ feet strips of ribbon can she cut?

Since this is a mixed number, she can only cut 8 whole strips.
$5.2=52$ tenths; $\frac{6}{10}=6$ tenths; 52 tenths $\div 6$ tenths $=52 \div 6=8 \frac{4}{6}$ or $8 \frac{2}{3}$
She can cut eight $\frac{6}{10}$ feet of ribbon.
b. How much ribbon is left over?

52 tenths -48 tenths $=4$ tenths

I can determine eight strips of $\frac{6}{10}$ feet of ribbon by multiplying $\frac{6}{10}$ by 8 . 6 tenths $\times 8=48$ tenths.

She will have $\frac{4}{10}$ feet of ribbon left over.

G6-M2-Lesson 4: Interpreting and Computing Division of a

Fraction by a Fraction-More Models

Calculate the quotient. If needed, draw a model.

1. $\frac{2}{5} \div \frac{2}{3}$

6 fifteenths $\div 10$ fifteenths $=6 \div 10=\frac{6}{10^{\prime}}$, or $\frac{3}{5}$

These fractions do not have the same denominator, or unit. I need to create like denominators to divide the numerators.
2. $\frac{2}{3} \div \frac{3}{5}$

10 fifteenths $\div 9$ fifteenths $=10 \div 9=\frac{10}{9}=1 \frac{1}{9}$

3. $\frac{3}{5} \div \frac{1}{6}$

18 thirtieths $\div 5$ thirtieths $=18 \div 5=\frac{18}{5}=3 \frac{3}{5}$
4. $\frac{5}{6} \div \frac{1}{3}$

15 eighteenths $\div 6$ eighteenths $=15 \div 6=\frac{15}{6}=2 \frac{1}{2}$

G6-M2-Lesson 5: Creating Division Stories

1. How many $\frac{1}{3}$ teaspoons of honey are in a recipe calling for $\frac{5}{6}$ teaspoons of honey?
$\frac{5}{6} \div \frac{1}{3}=\frac{5}{6} \div \frac{2}{6}$
5 sixths $\div 2$ sixths $=5 \div 2=\frac{5}{2}=2 \frac{1}{2}$
There are $2 \frac{1}{2}$ one-third teaspoons of honey in $\frac{5}{6}$ teaspoons.
2. Write a measurement story problem for $5 \div \frac{3}{5}$.

How many $\frac{3}{5}$ cups of milk are in a recipe calling for 5 cups?
3. Fill in the blanks to complete the equation. Then, find the quotient, and draw a model to support your solution.

$$
\begin{aligned}
& \frac{1}{3} \div 7=\frac{1}{\square} \text { of } \frac{1}{3} \\
& \frac{1}{3} \div 7=\frac{1}{7} \text { of } \frac{1}{3}
\end{aligned}\left\{\begin{array}{l}
\text { When I divide by } 7, \text { I know that is } \\
\text { the same as taking a seventh, or } \\
\text { multiplying by } \frac{1}{7} . \text { The word "of" } \\
\text { tells me to multiply in this case. }
\end{array}\right.
$$

4. Pam used 8 loads of soil to cover $\frac{4}{5}$ of her garden. How many loads of soil will she need to cover the entire garden?

4 units $=8$
1 unit $=8 \div 4=2$
5 units $=5 \times 2=10$

I can use the partitive interpretation of division here since I know both parts and need to determine the total amount.

Pam needs 10 loads of soil to cover the entire garden.
5. Becky plans to run 3 miles on the track. Each lap is $\frac{1}{4}$ miles. How many laps will Becky run?
$3 \div \frac{1}{4}=12$ fourths $\div 1$ fourth $=12 \div 1=\frac{12}{1}=12$. Becky will run 12 laps.
6. Kaliah spent $\frac{2}{3}$ of her money on an outfit. She spent $\frac{3}{8}$ of the remaining money on a necklace. If she has \$15 left, how much did the outfit cost?
$\frac{3}{3}-\frac{2}{3}=\frac{1}{3}$
$\frac{1}{3} \times \frac{3}{8}=\frac{1}{8}$
$\frac{2}{3}+\frac{1}{8}=\frac{16}{24}+\frac{3}{24}=\frac{19}{24}$
$\frac{24}{24}-\frac{19}{24}=\frac{5}{24}$
15 is $\frac{5}{24}$ of what number?
5 units = 15
1 unit $=15 \div 5=3$
16 units $=16 \times 3=48$
The outfit cost \$48.

G6-M2-Lesson 6: Creating Division Stories

1. $\frac{5}{6}$ teaspoons is $\frac{1}{3}$ group of what size?
$\frac{5}{6} \div \frac{1}{3}$
5 sixths $\div 2$ sixths $=\frac{5}{2}=2 \frac{1}{2}$
$\frac{5}{6}$ teaspoons is $\frac{1}{3}$ group of $2 \frac{1}{2}$ teaspoons.

In partitive division, I know the parts and need to find the total amount. I can choose the unit of feet and create a story.
2. Write a partitive division story problem for $\frac{7}{10} \div \frac{1}{5}$. Brendan had $\frac{7}{10}$ foot of rope. This is $\frac{1}{5}$ the amount he needs. How much rope does he need in all?
3. Fill in the blanks to complete the equation. Then, find the quotient, and draw a model to support your solution.

$$
\begin{aligned}
& \frac{5}{6} \div 4=\frac{\square}{4} \text { of } \frac{5}{6} \\
& \frac{5}{6} \div 4=\frac{1}{4} \text { of } \frac{5}{6}
\end{aligned} \quad \begin{aligned}
& \text { I can think of this as what is } \frac{1}{4} \text { of } \\
& \frac{5}{6} ? \frac{5}{6} \text { is the total. I am looking } \\
& \text { for the part. }
\end{aligned}
$$

4 units $\rightarrow \frac{5}{6}$
1 unit $\rightarrow \frac{5}{6} \div 4=\frac{5}{6} \times \frac{1}{4}=\frac{5}{24}$
4. Karrie cleaned $\frac{1}{5}$ of her house in 45 minutes. How long will it take her to clean the entire house?
$45 \mathrm{~min} \times \frac{1}{60} \frac{\mathrm{hr}}{\mathrm{min}}=\frac{45}{60} \mathrm{hr}=\frac{3}{4} \mathrm{hr}$.
$\frac{3}{4} \div \frac{1}{5}=15$ twentieths $\div 4$ twentieths $=\frac{15}{4}=3 \frac{3}{4}$
It will take Karrie $3 \frac{3}{4}$ hours to clean the entire house.

I can look at this as partitive division. I know it takes $\frac{3}{4}$ hours to clean $\frac{1}{5}$ of the house. I'm looking to find the total amount of hours needed to clean the whole house.

G6-M2-Lesson 7: The Relationship Between Visual Fraction
 Models and Equations

Invert and multiply to divide.

1. $\frac{6}{7} \div \frac{2}{3}$
$\frac{6}{7} \div \frac{2}{3}=\frac{6}{7} \times \frac{3}{2}=\frac{18}{14}=\frac{9}{7}$

2. Cody used $\frac{3}{4}$ of his gas. If he used $\frac{5}{7}$ of a tank, how much gas did he start with?

$\frac{5}{7}$ is $\frac{3}{4}$ of what number?
$\frac{5}{7} \div \frac{3}{4}$
3 units $=\frac{5}{7}$
1 unit $=\frac{5}{7} \div 3=\frac{5}{7} \times \frac{1}{3}=\frac{5}{21}$
This shows why I can invert and multiply the second factor.

4 units $=\frac{5}{21} \times 4=\frac{20}{21}$
$\frac{5}{7}$ is $\frac{3}{4}$ of $\frac{20}{21}$.
3. Claire has 7 half-pound packages of trail mix. She wants to make packages that contain $1 \frac{1}{2}$ pounds. How many packages can she make?
$1 \frac{1}{2}=\frac{2}{2}+\frac{1}{2}=\frac{3}{2}$

$\frac{7}{2}$ is how many $\frac{3}{2}$?
I need to represent this mixed number with a fraction and then invert and multiply.
$\frac{7}{2} \div \frac{3}{2}=\frac{7}{2} \times \frac{2}{3}=\frac{14}{6}$
$\frac{14}{6}=\frac{7}{3}=2 \frac{1}{3}$
Claire can make two whole packages with enough left over for $\frac{1}{3}$ package.
4. Draw a model that shows $\frac{3}{5} \div \frac{1}{2}$. Find the quotient.

$$
\frac{3}{5} \div \frac{1}{2}=\frac{3}{5} \times \frac{2}{1}=\frac{6}{5}=1 \frac{1}{5}
$$

G6-M2-Lesson 8: Dividing Fractions and Mixed Numbers

Calculate each quotient.

1. $\frac{3}{7} \div 4 \frac{1}{5}$

$$
4 \frac{1}{5}=\left(4 \times \frac{5}{5}\right)+\frac{1}{5}
$$

$$
\frac{20}{5}+\frac{1}{5}=\frac{21}{5}
$$

$$
\frac{3}{7} \div \frac{21}{5}=\frac{3}{7} \times \frac{5}{21}=\frac{15}{147}=\frac{5}{49}
$$

Before I divide, I need to change $4 \frac{1}{5}$ into a fraction. I know that 4 can be represented as $\frac{20}{5}$. I can add that to $\frac{1}{5}$ to determine the equivalent fraction.
2. $5 \frac{1}{3} \div \frac{5}{8}$

$$
\begin{aligned}
5 \frac{1}{3} & =\left(5 \times \frac{3}{3}\right)+\frac{1}{3} \\
\frac{15}{3}+\frac{1}{3} & =\frac{16}{3} \\
\frac{16}{3} \div \frac{5}{8} & =\frac{16}{3} \times \frac{8}{5}=\frac{128}{15}=8 \frac{8}{15}
\end{aligned}
$$

$$
\text { Before I divide, I need to change } 5 \frac{1}{3}
$$

$$
\text { into a fraction. I know that } 5 \text { can be }
$$ represented as $\frac{15}{3}$. I can add that to $\frac{1}{3}$ to determine the equivalent fraction.

